
Django Channels
Teaching a mature framework new tricks

@rony_sheer

If you had pick a web framework for a new project,
what would you choose?

But isn’t Django like from 2008… like Web 1.0?

But isn’t django like from 2008… Like web 1.0

● Slow
● What about
● Rest-api
● Async
● Slowww

Common workarounds
● Use Tornado
● Use NodeJS
● SAAS like Pusher

Until...

Who is this guy?
● Teacher
● I coded a few apps to help teachers

○ (Then I went on to code a little platform to help teachers)
● Python makes me happy
● @rony_sheer on twitter
● simplifiedlms.com

Our stack

Why Django?
● Documentation is second to none
● Very sensible defaults
● Abstracts away the right stuff
● Gives you control of level of abstraction

import …

def hey_view(request):

 return HttpResponse(‘hey’)

urlpatterns = (

 url(r’^$’, hey_view),

)

class HeyView(TemplateView):

 …

Or

urlpatterns = [

 url(r'^$',
 TemplateView.as_view(template_name='index.html'))
]

Testing

assertEqual(response.status_code, 200)

Pythonic

import this

Djangonic
● Superbly documented
● Let’s you find abstraction sweetspot
● Very testable
● Sensible defaults
● Nudges towards time-tested architectural patterns

Djangonic + WebSockets?
● Superbly documented
● Let’s you find abstraction sweetspot
● Very testable
● Sensible defaults
● Nudges towards time-tested architectural patterns

WebSockets
1. Connect via HTTPS or HTTP
2. Request WebSockets connection
3. Request is accepted or rejected
4. Two-way send/receive interaction
5. Disconnect

Use cases
● Messaging
● Instant updates
● Gaming
● Art

WSGI is very much about Request and Response

● Great for HTTP
● Not so great for WebSockets

ASGI

● New interface
● Suitable for HTTP, HTTP 2, WebSockets

So how do we make WebSockets Djangonic?

Channels

A channel
“an ordered, first-in first-out queue with message expiry and at-most-once delivery
to only one listener at a time.” — channels docs

A channel
“an ordered, first-in first-out queue with message expiry and at-most-once delivery
to only one listener at a time.” — channels docs

Huh? Show me the code!

View vs. consumer

def post_list(request):
 ...
 return render(
 request, "list.html",
 {"posts": posts})

def ws_message(message):
 ...
 message.reply_channel.send({
 “text”: message.context[‘text’],
 })

Channel = FIFO queue

Consumer: Listens to a channel

def ws_message(message):
 ...
 message.reply_channel.send({
 “text”: message.context[‘text’],
 })

Consumer: Listens to a channel

class ChatConsumer(JsonWebsocketConsumer):
 strict_ordering = False
 slight_ordering = True

 def connection_groups(self, **kwargs):
 return [‘friends’]

 def receive(self,content):
 self.group_send(content)

Routing: Look familiar?

channel_routing = [

 route_class(ChatConsumer, path=r’^/chat’),

]

You know more
than you’d think

Channel layers

CHANNEL_LAYERS = {
 "default": {
 "BACKEND": "asgiref.inmemory.ChannelLayer",
 "ROUTING": "myproject.routing.channel_routing",
 },
}

Channel layers(production)

CHANNEL_LAYERS = {
 "default": {
 "BACKEND": "asgi_redis.RedisChannelLayer",
 "CONFIG": {
 "hosts": [("localhost", 6379)],
 },
 "ROUTING": "myproject.routing.channel_routing",
 },
}

Daphne

class SketchConsumer(JsonWebsocketConsumer):
 strict_ordering = False
 slight_ordering = True

 def connection_groups(self, **kwargs):
 return ['draw']

 def receive(self, content, **kwargs):
 self.group_send('draw', content)

Javascript

data = JSON.stringify({

 'x': mouseX,

 'y': mouseY

});

socket.send(data);

var socket = new WebSocket("ws://" + window.location.host + "/draw");

// es 6
let socket = new WebSocket(`ws://${ window.location.host }/draw`);

Resources
● Channels documentation
● ASGI documentation
● Andrew Godwin's Channels talk (Django Under the Hood)
● Get started with Channels by Jacob Kaplan-Moss
● P5js + Daniel Shiffman tuorials

Thank you

