
Gordon

A very convenient AWS lambda
automation framework

PyWeb-IL - Dec 5, 2016
David Melamed

Agenda

● What is serverless? Why do we need this?
● AWS lambda basics
● Gordon, one way to automate lambda
● Demo

Who am I?

Moved to Israel 8 years ago PhD in BioInformatics Technical Leader

Where do I work?

1.3 B / month

Leader in the Cloud Access Security Broker (CASB) market

Founded: 2011

Corporate Headquarters: Waltham, Mass. (U.S.A.)

R&D Headquarters: Tel Aviv

Employees: 160 (30 in TLV)

Trusted by major brands:

Acquired by Cisco

360K
APPS

10 M
USERS ACTIVITIES

Traditional architectures

● Monolithic architecture
Easy to develop, test, deploy BUT hard to maintain & scale

● Service-oriented architecture
Easier to scale BUT harder to test & deploy

● Microservices
Easier to deploy & scale BUT harder to develop & test

The need for serverless

● Fully managed
● No provisioning
● Highly available
● Cheaper (pay per invocation & sec.)

● Easy to develop
● Easy to deploy
● Easy to maintain
● Hard to test

Available on each major platform

● AWS lambda

● Azure functions

● Google Cloud functions (alpha)

AWS Lambda in a nutshell

● Use containers behind-the-scenes
● Support for versioning, aliases and test events
● Supports Python, NodeJS, Java and C#
● Supports environment variables
● In-place edit for Python if no dependency
● Triggered by S3, SNS, SES, CloudWatch event...
● External call through API Gateway
● Pay-as-you-go per invocation and execution time (1,000,000 free requests)
● Logs automatically stored in CloudWatch Logs
● Monitoring through CloudWatch
● Limitations: 5 min max, 100 parallel executions (before throttle)

AWS Lambda hello-world example

def handler(event, context):
 print “Hello world”

Gordon - python lambda automation
framework

● Written in Python
● Uses CloudFormation behind-the-scenes
● Supports lambda function in python, javascript, java
● Supports multiple event sources: S3, events, dynamodb, API Gateway, SNS (*)
● Supports parameters & stages
● Supports for VPC
● Supports for secrets (**)
● Supports versioning and auto-update of the current alias
● Ability to run the lambda locally
● Custom build process

Gordon 5 commands

● startproject
● startapp
● run
● build
● apply

Full documentation: http://gordon.readthedocs.io/en/latest/index.html

http://gordon.readthedocs.io/en/latest/index.html

Gordon project

● Structure includes apps and settings

● Start a project using scaffold by running:
gordon startproject my_project

● Project settings:
○ Code bucket
○ List of apps
○ Contexts
○ Lambda triggers: CloudWatch & S3 events
○ VPCs definition (SG/subnets)

my_project
├── settings.yml
└── my_app
 ├── my_app_func
 │ └── code.py
 └── settings.yml
└── my_second_app
 ├── my_second_app_func
 │ └── code.py
 └── settings.yml

Gordon app

● Structure includes the app code and settings

● Add an app to the project by running:
gordon startapp my_app

● Settings for app:
○ List of lambda functions
○ For each lambda, code location & entrypoint, runtime, timeout, vpc IP, customer build, role

Gordon parameters & contexts

● Parameters in YAML file per “stage”
● Injected in a .context file available in lambda
● Support for secrets through ansible-vault (*)

(*) https://github.com/dmelamedcl/gordon/pull/1

Gordon run (local test)

● Ability to run locally the lambda function by running:
echo ‘{}’ | gordon run my_app.my_lambda_func

● Simulate the event injected in lambda:
echo ‘{“param1”: 12}’ | gordon run my_app.my_lambda_func

● Simulate context injected to lambda:
echo ‘{}’ | GORDON_CONTEXT=$(pwd)/path/to/context.json gordon run my_app.my_lambda_func

● Issue: not possible to use real context in local testing

Gordon build

● Builds the CloudFormation templates and artifacts (zip packages):
gordon build [--debug]

● Issue: how to deal with binaries / compiled libs?

● Solution: Custom build possible, i.e. using Docker (lambdaci)
 build:
- cp -Rf * {target}
- docker run --rm -v {target}:/var/task -v /tmp/.pip-cache:/pip-cache

lambdaci/lambda:build-python2.7 pip install -r requirements.txt -t {target}
{pip_install_extra}

- cd {target} && find . -name “*.pyc” -delete

https://github.com/lambci/lambci

Gordon apply

● Uploads the artifacts to s3

● Run the CloudFormation templates (which will create missing resources)

● Support of environments using:
gordon apply --stage=prod --region=us-east-1

● Support of secrets using:
VAULT_PASSWORD_prod=my_pass gordon apply --stage=prod

DEMO TIME

Build a slack command returning the current weather in 5 min

Weather app architecture

Slack
/weather <city name>

AWS API Gateway AWS Lambda

API OpenWeatherMap

Response
in Slack

A few alternatives to Gordon

● Serverless (Javascript) https://serverless.com/

● Apex (Go) http://apex.run/

● Chalice (Python) https://github.com/awslabs/chalice

● Sparta (Go) http://gosparta.io/

● SAM https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md

https://serverless.com/
http://apex.run/
https://github.com/awslabs/chalice
http://gosparta.io/
https://github.com/awslabs/serverless-application-model/blob/master/versions/2016-10-31.md

Interested? Send an email to dmelamed@cisco.com

